22003 measured reflections

 $R_{\rm int} = 0.058$

7779 independent reflections

4053 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

meso-[5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-1(14),7diene]nickel(II) dibromide dihydrate

Feifei Shi,^a Xiaodan Chen,^a* Rong Rong^b and Qiangian Bao^a

^aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and ^bDepartment of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China

Correspondence e-mail: chmsunbw@seu.edu.cn

Received 3 April 2010; accepted 7 May 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.038; wR factor = 0.059; data-to-parameter ratio = 16.8.

The asymmetric unit of the title complex, $[Ni(C_{16}H_{32}N_4)]Br_2$. 2H₂O, contains two $[Ni(C_{16}H_{32}N_4)]^{2+}$ cations, four Br⁻ anions and four uncoordinated H₂O molecules. The Ni atoms are in a slightly distorted square-planar coordination by the four macrocyclic N atoms, which are almost coplanar [N-N-N-N torsion angles of 2.97 (6) and 3.12 $(7)^{\circ}$]. In the crystal, a network of $N-H\cdots Br$, $O-H\cdots Br$ and $N-H\cdots O$ hydrogen bonds leads to the formation of a chain structure.

Related literature

The nickel (II) tetraazamacrocyclic complex cation, $[Ni(C_{16}H_{32}N_4)]^{2+}$, has both meso and enantiomeric forms, see: Warner et al. (1968). For the structures of related macrocyclic complexes, see: Whimp et al. (1970). For Ni-N(amine) and Ni-N(imine) bond distances, see: Szalda et al. (1991).

Experimental

Crystal data

$[Ni(C_{16}H_{32}N_4)]Br_2 \cdot 2H_2O$	V = 4424.2 (7) Å ³
$M_r = 535.02$	Z = 8
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 17.8712 (15) Å	$\mu = 4.51 \text{ mm}^{-1}$
b = 15.5028 (12) Å	T = 293 K
c = 17.2324 (17) Å	$0.27 \times 0.20 \times 0.20$ mm
$\beta = 112.077 \ (1)^{\circ}$	

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.831, T_{\max} = 0.862$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	463 parameters
$vR(F^2) = 0.059$	H-atom parameters constrained
S = 0.96	$\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$
779 reflections	$\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ni2-N6	1.976 (4)	Ni1-N2	1.985 (4)
Ni2-N8	1.983 (3)	Ni1-N4	1.993 (4)
Ni2-N7	2.003 (3)	Ni1-N1	2.007 (3)
Ni2-N5	2.029 (3)	Ni1-N3	2.020 (3)
N6-Ni2-N8	172.20 (16)	N2-Ni1-N4	174.32 (16)
N6-Ni2-N7	84.38 (14)	N2-Ni1-N1	94.09 (14)
N8-Ni2-N7	94.04 (14)	N4-Ni1-N1	85.03 (14)
N6-Ni2-N5	94.20 (14)	N2-Ni1-N3	85.80 (14)
N8-Ni2-N5	85.74 (14)	N4-Ni1-N3	94.09 (14)
N7-Ni2-N5	167.87 (17)	N1-Ni1-N3	170.06 (17)

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···Br3	0.91	2.55	3.444 (4)	167
$O2-H2F\cdots Br2$	0.85	2.60	3.437 (3)	171
$O3-H3D\cdots Br3$	0.85	2.63	3.473 (3)	171
$N5-H5\cdots O4^{i}$	0.91	2.41	3.269 (5)	158
$O1-H1C\cdots Br1^{i}$	0.85	2.55	3.390 (3)	170
$N7 - H7 \cdot \cdot \cdot Br2^{ii}$	0.91	2.54	3.436 (4)	169
N3-H3···O1 ⁱⁱ	0.91	2.45	3.328 (5)	161
O2−H2E···Br3 ⁱⁱⁱ	0.85	2.50	3.339 (4)	171
$O1 - H1D \cdots Br4^{iii}$	0.85	2.44	3.280 (3)	169
$O3-H3C\cdots Br2^{ii}$	0.85	2.48	3.316 (3)	170
$O4-H4G\cdots Br4^{ii}$	0.85	2.49	3.335 (4)	171
$O4-H4F\cdots Br1^{iv}$	0.85	2.39	3.228 (3)	171
Symmetry codes: $-r - 1$ $v - \frac{1}{2} - z - \frac{1}{2}$	(i) $-x, y - x, y - y + \frac{1}{2} = 0$	$\frac{1}{2}, -z - \frac{1}{2};$ (ii)) $-x - 1, y + \frac{1}{2}$	$, -z - \frac{1}{2};$ (iii)

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2024).

References

Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Szalda, D. J., Schwarz, C. L. & Creutz, C. (1991). Inorg. Chem. 30, 586–588.Warner, L. G., Rose, N. J. & Busch, D. H. (1968). J. Am. Chem. Soc. 90, 6938–6946.
- Whimp, P. O., Bailey, M. F. & Curtis, N. F. (1970). J. Chem. Soc. A, pp. 1956–1963

Acta Cryst. (2010). E66, m665-m666 [doi:10.1107/S1600536810016831]

meso-[5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-1(14),7-diene]nickel(II) dibrom-ide dihydrate

F. Shi, X. Chen, R. Rong and Q. Bao

Comment

The structures of several related macrocyclic complexes have been reported (Whimp *et al.*, 1970). The nickel (II) tetraazamacrocyclic complex cation, $[Ni(C_{16}H_{32}N_4)]^{2+}$, has both meso and enantiomeric forms (Warner *et al.*, 1968) and can combine with different anions to form many kinds of structures.

We herein report the crystal structure of a new compound synthesized by the reaction of Ni(NO₃)₂.6H₂O and the complex C₁₈H₃₂N₄.2HBr.2H₂O. Two similar macrocycles are included in the asymmetric unit, and the crystal structure is stabilized by intermolecular hydrogen bonds. As the two macrocycles are in similar coordination with nickel(II), only one of them will be described. As shown in Fig.1, the Ni^{II} atom is coordinated by four N atoms from the tetraazamacrocycle in a square-planar geometry, the average Ni—*N*(amine) bond distance of 2.0132 (4) Å and Ni—*N*(imine) bond distance of 1.9899 (4)Å are similar to those previously reported (Szalda *et al.*,1991). The dihedral "fold" angle between the planes formed by N1, N2, N3 and N1, N3, N4 is 4.343 (1)°. The macrocycle is in the N-meso configuration with the amine hydrogens of N1 and N4 on opposite sides of the macrocycle plane. The combination of [Ni(C₁₆H₃₂N₄)]²⁺with two Br⁻ anions and two isolated H₂O established the title compound.

Experimental

All chemicals were of reagent grade and were used as received without further purification. The precursor complex $C_{18}H_{32}N_{4.2}HBr.2H_2O$ was prepared previously. To a 10 ml methanol solution of Ni(NO₃)_{2.6}H₂O (0.2 mmol, 0.344 g), a 5 ml methanol solution of $C_{18}H_{32}N_{4.2}HBr.2H_2O$ (0.2 mmol, 0.0957 g) was added dropwise with stirring. The resulting solution was stirred continuously for about 30 min. Brown crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days.

Refinement

(type here to add refinement details)

Figures

Fig. 1. The asymmetric structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Crystal packing of the compound (I) (viewed along the b axis). Hydrogen bonds are shown as dashed lines.

meso-[5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-1(14),7-diene]nickel(II) dibromide dihydrate

Crystal data

$[Ni(C_{16}H_{32}N_4)]Br_2 \cdot 2H_2O$	F(000) = 2192
$M_r = 535.02$	$D_{\rm x} = 1.606 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3476 reflections
a = 17.8712 (15) Å	$\theta = 2.3 - 27.5^{\circ}$
b = 15.5028 (12) Å	$\mu = 4.51 \text{ mm}^{-1}$
c = 17.2324 (17) Å	<i>T</i> = 293 K
$\beta = 112.077 \ (1)^{\circ}$	Prism, brown
V = 4424.2 (7) Å ³	$0.27\times0.20\times0.20~mm$
Z = 8	

Data collection

Rigaku SCXmini diffractometer	7779 independent reflections
Radiation source: fine-focus sealed tube	4053 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.058$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Thin–slice ω scans	$h = -21 \rightarrow 21$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -18 \rightarrow 15$
$T_{\min} = 0.831, T_{\max} = 0.862$	$l = -19 \rightarrow 20$
22003 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.059$	H-atom parameters constrained
<i>S</i> = 0.96	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.010P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
7779 reflections	$(\Delta/\sigma)_{\text{max}} = 0.040$
463 parameters	$\Delta \rho_{max} = 0.64 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	Uiso*/Ueq
Br1	0.06334 (3)	0.57394 (3)	-0.16013 (4)	0.06124 (18)
Ni2	-0.10293 (3)	0.51327 (3)	-0.23954 (4)	0.02985 (17)
N5	-0.0695 (2)	0.4164 (2)	-0.2988 (2)	0.0339 (10)
Н5	-0.0146	0.4182	-0.2789	0.041*
N6	-0.1135 (2)	0.5992 (2)	-0.3277 (2)	0.0352 (11)
N7	-0.1596 (2)	0.6021 (2)	-0.1971 (2)	0.0357 (10)
H7	-0.2127	0.5973	-0.2307	0.043*
N8	-0.1079 (2)	0.4233 (2)	-0.1599 (2)	0.0355 (10)
C17	-0.0961 (3)	0.4235 (3)	-0.3918 (3)	0.0394 (14)
C18	-0.0609 (3)	0.5076 (3)	-0.4096 (3)	0.0427 (14)
H18A	-0.0029	0.5054	-0.3792	0.051*
H18B	-0.0700	0.5082	-0.4687	0.051*
C19	-0.0903 (3)	0.5929 (3)	-0.3893 (3)	0.0343 (13)
C20	-0.0899 (3)	0.6657 (3)	-0.4463 (3)	0.0555 (16)
H20A	-0.1179	0.7142	-0.4355	0.083*
H20B	-0.1164	0.6478	-0.5035	0.083*
H20C	-0.0352	0.6817	-0.4364	0.083*
C21	-0.1883 (3)	0.4229 (3)	-0.4317 (3)	0.0529 (15)

H21A	-0.2078	0.3660	-0.4275	0.079*
H21B	-0.2054	0.4389	-0.4896	0.079*
H21C	-0.2096	0.4632	-0.4030	0.079*
C22	-0.0610 (3)	0.3490 (3)	-0.4255 (3)	0.0613 (17)
H22A	-0.0031	0.3510	-0.4007	0.092*
H22B	-0.0783	0.3540	-0.4852	0.092*
H22C	-0.0796	0.2952	-0.4118	0.092*
C23	-0.1436 (3)	0.6823 (3)	-0.3104 (3)	0.0514 (15)
H23A	-0.2003	0.6888	-0.3456	0.062*
H23B	-0.1139	0.7292	-0.3227	0.062*
C24	-0.1332 (3)	0.6852 (3)	-0.2194 (3)	0.0501 (15)
H24A	-0.0769	0.6954	-0.1846	0.060*
H24B	-0.1651	0.7317	-0.2101	0.060*
C25	-0.1571 (3)	0.5927 (3)	-0.1092 (3)	0.0341 (13)
C26	-0.1918 (3)	0.5040 (3)	-0.1031 (3)	0.0439 (15)
H26A	-0.1953	0.5003	-0.0484	0.053*
H26B	-0.2466	0.5024	-0.1442	0.053*
C27	-0.1502 (3)	0.4240 (3)	-0.1146 (3)	0.0369 (13)
C28	-0.1643 (3)	0.3468 (3)	-0.0697 (3)	0.0574 (16)
H28A	-0.1586	0.2953	-0.0980	0.086*
H28B	-0.2177	0.3493	-0.0692	0.086*
H28C	-0.1255	0.3463	-0.0132	0.086*
C29	-0.0720 (3)	0.6024 (3)	-0.0467 (3)	0.0507 (15)
H29A	-0.0374	0.5626	-0.0599	0.076*
H29B	-0.0706	0.5904	0.0085	0.076*
H29C	-0.0537	0.6602	-0.0486	0.076*
C30	-0.2117 (3)	0.6610 (3)	-0.0929 (3)	0.0535 (16)
H30A	-0.1939	0.7175	-0.1011	0.080*
H30B	-0.2089	0.6557	-0.0364	0.080*
H30C	-0.2664	0.6525	-0.1310	0.080*
C31	-0.0680 (3)	0.3446 (3)	-0.1725 (3)	0.0435 (14)
H31A	-0.0861	0.2950	-0.1501	0.052*
H31B	-0.0100	0.3496	-0.1442	0.052*
C32	-0.0902 (3)	0.3340 (3)	-0.2661 (3)	0.0459 (14)
H32A	-0.0602	0.2864	-0.2770	0.055*
H32B	-0.1474	0.3220	-0.2936	0.055*
Br4	-0.81792 (3)	0.44516 (3)	-0.34183 (4)	0.06261 (18)
Ni1	-0.64399 (4)	0.49111 (3)	-0.26081 (4)	0.03044 (17)
N1	-0.5901 (2)	0.3918 (2)	-0.2936 (2)	0.0354 (11)
H1	-0.5368	0.3963	-0.2606	0.043*
N2	-0.6377 (2)	0.5683 (2)	-0.3500 (2)	0.0368 (11)
N3	-0.6786 (2)	0.5972 (2)	-0.2150 (2)	0.0353 (10)
Н3	-0.7336	0.5963	-0.2372	0.042*
N4	-0.6390 (2)	0.4167 (2)	-0.1647 (2)	0.0359 (11)
C1	-0.5930 (3)	0.3873 (3)	-0.3819 (3)	0.0313 (12)
C2	-0.5582 (3)	0.4715 (3)	-0.3992 (3)	0.0380 (14)
H2A	-0.5032	0.4758	-0.3589	0.046*
H2B	-0.5551	0.4662	-0.4540	0.046*
C3	-0.5990 (3)	0.5561 (3)	-0.3978 (3)	0.0354 (13)

C4	-0.5878 (3)	0.6236 (3)	-0.4561 (3)	0.0611 (17)
H4A	-0.6262	0.6139	-0.5119	0.092*
H4B	-0.5341	0.6199	-0.4557	0.092*
H4C	-0.5962	0.6800	-0.4377	0.092*
C5	-0.6790 (3)	0.3733 (3)	-0.4429 (3)	0.0454 (14)
H5A	-0.6964	0.3164	-0.4355	0.068*
H5B	-0.6813	0.3796	-0.4991	0.068*
H5C	-0.7138	0.4152	-0.4326	0.068*
C6	-0.5388 (3)	0.3142 (3)	-0.3897 (3)	0.0508 (15)
H6A	-0.4843	0.3244	-0.3517	0.076*
H6B	-0.5406	0.3121	-0.4460	0.076*
H6C	-0.5575	0.2604	-0.3761	0.076*
C7	-0.6760 (3)	0.6513 (3)	-0.3461 (3)	0.0472 (14)
H7A	-0.7341	0.6472	-0.3752	0.057*
H7B	-0.6560	0.6962	-0.3724	0.057*
C8	-0.6554 (3)	0.6722 (3)	-0.2541 (3)	0.0432 (14)
H8A	-0.5980	0.6833	-0.2267	0.052*
H8B	-0.6846	0.7231	-0.2488	0.052*
С9	-0.6561 (3)	0.6020 (3)	-0.1223 (3)	0.0371 (13)
C10	-0.6925 (3)	0.5229 (3)	-0.0965 (3)	0.0429 (15)
H10A	-0.6861	0.5306	-0.0385	0.051*
H10B	-0.7501	0.5230	-0.1295	0.051*
C11	-0.6607 (3)	0.4350 (3)	-0.1044 (3)	0.0351 (13)
C12	-0.6587 (3)	0.3714 (3)	-0.0382(3)	0.0623 (17)
H12A	-0.7127	0.3529	-0.0476	0.094*
H12B	-0.6354	0.3981	0.0159	0.094*
H12C	-0.6267	0.3225	-0.0405	0.094*
C13	-0.5648 (3)	0.6037 (3)	-0.0775 (3)	0.0556 (15)
H13A	-0.5413	0.5583	-0.0988	0.083*
H13B	-0.5511	0.5955	-0.0186	0.083*
H13C	-0.5443	0.6583	-0.0869	0.083*
C14	-0.6937 (3)	0.6820 (3)	-0.0992(3)	0.0593 (17)
H14A	-0.6707	0.7330	-0.1129	0.089*
H14B	-0.6829	0.6814	-0.0403	0.089*
H14C	-0.7509	0.6818	-0.1300	0.089*
C15	-0.6085(3)	0 3292 (3)	-0.1724(3)	0.0501 (15)
H15A	-0.6381	0.2860	-0 1548	0.060*
H15B	-0.5518	0.3247	-0.1367	0.060*
C16	-0.6193 (3)	0.3139 (3)	-0.2628(3)	0.0491 (16)
H16A	-0.5887	0.2636	-0.2669	0.059*
H16B	-0.6758	0 3038	-0.2965	0.059*
01	-0.1258(2)	0 14016 (19)	-0.1866 (2)	0.0825 (13)
H1C	-0.1085	0 1305	-0.2255	0.124*
HID	-0 1424	0.0927	-0 1741	0.124*
02	-0.5584 (2)	0.0948 (2)	-0.2991 (2)	0.0977 (15)
H2E	-0 5670	0.0435	-0.3176	0 147*
H2F	-0 5789	0 1006	-0.2622	0 147*
03	-0.3103(2)	0 3868 (2)	-0.2944(2)	0.0893 (13)
H3C	-0 3183	0 4385	-0.3121	0 134*
	0.0100	0.1000	0.0121	0.101

H3D	-0.3299	0.3811	-0.2568	0.134*
O4	-0.1221 (2)	0.8839 (2)	-0.3111 (3)	0.1020 (16)
H4F	-0.1049	0.9311	-0.3232	0.153*
H4G	-0.1388	0.8935	-0.2718	0.153*
Br2	-0.64785 (4)	0.09231 (3)	-0.15400 (4)	0.06252 (18)
Br3	-0.39677 (4)	0.38931 (4)	-0.14455 (4)	0.06808 (19)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0463 (4)	0.0723 (4)	0.0632 (5)	-0.0046 (3)	0.0184 (4)	-0.0208 (3)
Ni2	0.0436 (5)	0.0205 (3)	0.0252 (4)	0.0034 (3)	0.0127 (4)	0.0004 (3)
N5	0.032 (3)	0.034 (2)	0.031 (3)	-0.0005 (18)	0.006 (2)	-0.0054 (19)
N6	0.045 (3)	0.025 (2)	0.035 (3)	0.0054 (18)	0.015 (2)	-0.001 (2)
N7	0.040 (3)	0.031 (2)	0.035 (3)	-0.0004 (18)	0.013 (2)	-0.003 (2)
N8	0.041 (3)	0.029 (2)	0.033 (3)	0.0009 (19)	0.011 (2)	-0.0011 (19)
C17	0.050 (4)	0.041 (3)	0.021 (3)	0.000 (3)	0.006 (3)	-0.003 (3)
C18	0.044 (4)	0.048 (3)	0.035 (3)	-0.003 (3)	0.013 (3)	-0.003 (3)
C19	0.032 (3)	0.031 (3)	0.032 (3)	-0.008 (2)	0.002 (3)	-0.003 (3)
C20	0.075 (5)	0.047 (3)	0.045 (4)	-0.006 (3)	0.023 (4)	0.007 (3)
C21	0.049 (4)	0.054 (3)	0.040 (4)	-0.009 (3)	-0.001 (3)	-0.004 (3)
C22	0.087 (5)	0.050 (3)	0.051 (4)	0.003 (3)	0.031 (4)	-0.016 (3)
C23	0.076 (4)	0.032 (3)	0.048 (4)	0.009 (3)	0.026 (4)	0.006 (3)
C24	0.072 (4)	0.034 (3)	0.052 (4)	0.002 (3)	0.032 (4)	-0.003 (3)
C25	0.034 (4)	0.033 (3)	0.036 (4)	-0.002 (2)	0.013 (3)	-0.006 (2)
C26	0.043 (4)	0.047 (3)	0.046 (4)	-0.005 (3)	0.022 (3)	-0.003 (3)
C27	0.040 (4)	0.033 (3)	0.029 (3)	-0.007 (2)	0.004 (3)	0.001 (2)
C28	0.074 (5)	0.048 (3)	0.054 (4)	-0.009 (3)	0.028 (4)	0.007 (3)
C29	0.046 (4)	0.059 (3)	0.039 (4)	-0.004 (3)	0.006 (3)	-0.007 (3)
C30	0.052 (4)	0.052 (3)	0.057 (4)	0.002 (3)	0.020 (3)	-0.014 (3)
C31	0.053 (4)	0.032 (3)	0.044 (4)	0.010 (2)	0.018 (3)	0.012 (3)
C32	0.063 (4)	0.030 (3)	0.047 (4)	0.003 (3)	0.023 (3)	-0.001 (3)
Br4	0.0479 (4)	0.0731 (4)	0.0598 (4)	-0.0013 (3)	0.0123 (3)	-0.0233 (3)
Ni1	0.0474 (5)	0.0200 (3)	0.0248 (4)	0.0021 (3)	0.0146 (4)	0.0008 (3)
N1	0.046 (3)	0.029 (2)	0.032 (3)	0.0045 (19)	0.016 (2)	0.0023 (19)
N2	0.049 (3)	0.025 (2)	0.034 (3)	0.0060 (19)	0.013 (2)	0.0005 (19)
N3	0.042 (3)	0.033 (2)	0.025 (3)	0.0006 (19)	0.007 (2)	-0.003 (2)
N4	0.050 (3)	0.025 (2)	0.034 (3)	0.0023 (19)	0.017 (2)	0.0007 (19)
C1	0.032 (4)	0.034 (3)	0.027 (3)	-0.003 (2)	0.011 (3)	-0.005 (2)
C2	0.038 (4)	0.044 (3)	0.035 (3)	0.002 (3)	0.017 (3)	-0.004 (3)
C3	0.036 (4)	0.040 (3)	0.026 (3)	-0.009 (3)	0.006 (3)	0.002 (3)
C4	0.067 (5)	0.064 (4)	0.061 (4)	0.011 (3)	0.035 (4)	0.027 (3)
C5	0.049 (4)	0.045 (3)	0.041 (4)	-0.001 (3)	0.015 (3)	-0.005 (3)
C6	0.057 (4)	0.044 (3)	0.052 (4)	0.012 (3)	0.020 (3)	-0.010 (3)
C7	0.069 (4)	0.032 (3)	0.045 (4)	0.005 (3)	0.027 (3)	0.006 (3)
C8	0.070 (4)	0.022 (3)	0.038 (4)	0.001 (2)	0.021 (3)	-0.001 (3)
C9	0.049 (4)	0.034 (3)	0.027 (3)	-0.004 (3)	0.014 (3)	-0.005 (2)
C10	0.043 (4)	0.048 (3)	0.041 (4)	-0.005 (3)	0.020 (3)	-0.004 (3)

C11	0.032 (3)	0.040 (3)	0.028 (3)	-0.007 (2)	0.006 (3)	-0.001 (3)
C12	0.086 (5)	0.060 (4)	0.052 (4)	0.006 (3)	0.039 (4)	0.016 (3)
C13	0.052 (4)	0.063 (4)	0.037 (4)	-0.024 (3)	0.000 (3)	-0.003 (3)
C14	0.083 (5)	0.050 (4)	0.048 (4)	0.001 (3)	0.028 (4)	-0.013 (3)
C15	0.077 (4)	0.036 (3)	0.043 (4)	-0.001 (3)	0.029 (3)	0.011 (3)
C16	0.075 (5)	0.024 (3)	0.056 (4)	-0.003 (3)	0.034 (4)	0.000 (3)
01	0.089 (3)	0.058 (2)	0.102 (3)	-0.002 (2)	0.038 (3)	-0.006 (2)
O2	0.105 (4)	0.098 (3)	0.099 (4)	-0.012 (3)	0.049 (3)	0.033 (3)
O3	0.101 (4)	0.070 (3)	0.096 (4)	0.008 (2)	0.036 (3)	-0.022 (2)
O4	0.113 (4)	0.050 (2)	0.172 (5)	0.001 (2)	0.087 (4)	-0.003 (3)
Br2	0.0602 (4)	0.0637 (4)	0.0547 (4)	0.0070 (3)	0.0113 (4)	-0.0054 (3)
Br3	0.0607 (5)	0.0799 (4)	0.0528 (4)	-0.0097 (3)	0.0090 (4)	0.0079 (3)

Geometric parameters (Å, °)

Ni2—N6	1.976 (4)	N1C16	1.490 (4)
Ni2—N8	1.983 (3)	N1—C1	1.504 (5)
Ni2—N7	2.003 (3)	N1—H1	0.9101
Ni2—N5	2.029 (3)	N2—C3	1.272 (5)
N5—C17	1.495 (5)	N2—C7	1.471 (5)
N5—C32	1.497 (5)	N3—C8	1.479 (4)
N5—H5	0.9100	N3—C9	1.495 (5)
N6-C19	1.280 (5)	N3—H3	0.9099
N6—C23	1.469 (5)	N4—C11	1.271 (5)
N7—C24	1.472 (5)	N4—C15	1.486 (5)
N7—C25	1.505 (5)	C1—C5	1.516 (6)
N7—H7	0.9100	C1—C2	1.524 (5)
N8—C27	1.275 (5)	C1—C6	1.528 (5)
N8—C31	1.470 (5)	C2—C3	1.504 (5)
C17—C21	1.529 (6)	C2—H2A	0.9700
C17—C18	1.527 (6)	C2—H2B	0.9700
C17—C22	1.529 (5)	C3—C4	1.516 (5)
C18—C19	1.512 (6)	C4—H4A	0.9600
C18—H18A	0.9700	C4—H4B	0.9600
C18—H18B	0.9700	C4—H4C	0.9600
C19—C20	1.497 (5)	С5—Н5А	0.9600
C20—H20A	0.9600	С5—Н5В	0.9600
C20—H20B	0.9600	С5—Н5С	0.9600
C20—H20C	0.9600	С6—Н6А	0.9600
C21—H21A	0.9600	С6—Н6В	0.9600
C21—H21B	0.9600	С6—Н6С	0.9600
C21—H21C	0.9600	C7—C8	1.521 (5)
C22—H22A	0.9600	С7—Н7А	0.9700
C22—H22B	0.9600	С7—Н7В	0.9700
C22—H22C	0.9600	C8—H8A	0.9700
C23—C24	1.509 (6)	C8—H8B	0.9700
C23—H23A	0.9700	C9—C13	1.520 (6)
С23—Н23В	0.9700	C9—C10	1.531 (5)
C24—H24A	0.9700	C9—C14	1.533 (5)

C24—H24B	0.9700	C10-C11	1.502 (6)
C25—C29	1.505 (6)	C10—H10A	0.9700
C25—C26	1.529 (5)	C10—H10B	0.9700
C25—C30	1.536 (5)	C11—C12	1.497 (5)
C26—C27	1.496 (6)	C12—H12A	0.9600
C26—H26A	0.9700	C12—H12B	0.9600
C26—H26B	0.9700	C12—H12C	0.9600
C27—C28	1.496 (5)	С13—Н13А	0.9600
C28—H28A	0.9600	С13—Н13В	0.9600
C28—H28B	0.9600	C13—H13C	0.9600
C28—H28C	0.9600	C14—H14A	0.9600
С29—Н29А	0.9600	C14—H14B	0.9600
С29—Н29В	0.9600	C14—H14C	0.9600
С29—Н29С	0.9600	C15—C16	1.515 (5)
C30—H30A	0.9600	C15—H15A	0.9700
С30—Н30В	0.9600	C15—H15B	0.9700
С30—Н30С	0.9600	C16—H16A	0.9700
C31—C32	1.518 (5)	C16—H16B	0.9700
C31—H31A	0.9700	O1—H1C	0.8500
C31—H31B	0.9700	O1—H1D	0.8500
C32—H32A	0.9700	O2—H2E	0.8499
С32—Н32В	0.9700	O2—H2F	0.8500
Ni1—N2	1.985 (4)	О3—НЗС	0.8498
Ni1—N4	1.993 (4)	O3—H3D	0.8500
Ni1—N1	2.007 (3)	O4—H4F	0.8501
Ni1—N3	2.020 (3)	O4—H4G	0.8499
214 21 0 210	172 20 (16)	NA NEL NI	95.02(14)
N6—N12—N8	172.20 (10)	IN4-INII-INI	83.03 (14)
N6—N12—N8 N6—Ni2—N7	84.38 (14)	N2—Ni1—N3	85.80 (14)
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7	84.38 (14) 94.04 (14)	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3	85.80 (14) 94.09 (14)
N6—N12—N8 N6—N12—N7 N8—N12—N7 N6—N12—N5	84.38 (14) 94.04 (14) 94.20 (14)	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3	85.80 (14) 85.80 (14) 94.09 (14) 170.06 (17)
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N8—Ni2—N5	84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14)	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3 C16—N1—C1	85.03 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3)
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N8—Ni2—N5 N7—Ni2—N5	112.20 (10) 84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14) 167.87 (17)	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3 C16—N1—C1 C16—N1—Ni1	85.80 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2)
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N8—Ni2—N5 N7—Ni2—N5 C17—N5—C32	84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14) 167.87 (17) 116.3 (3)	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3 C16—N1—C1 C16—N1—Ni1 C1—N1—Ni1	85.80 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3)
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N8—Ni2—N5 N7—Ni2—N5 C17—N5—C32 C17—N5—Ni2	112.20 (10) 84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14) 167.87 (17) 116.3 (3) 116.7 (3)	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3 C16—N1—C1 C16—N1—Ni1 C1—N1—Ni1 C16—N1—H1	83.03 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3) 105.3
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N8—Ni2—N5 N7—Ni2—N5 C17—N5—C32 C17—N5—Ni2 C32—N5—Ni2	112.20 (10) 84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14) 167.87 (17) 116.3 (3) 116.7 (3) 106.3 (2)	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3 C16—N1—C1 C16—N1—Ni1 C1—N1—Ni1 C16—N1—H1 C1—N1—H1	83.03 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3) 105.3 105.4
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N8—Ni2—N5 N7—Ni2—N5 C17—N5—C32 C17—N5—Ni2 C32—N5—Ni2 C17—N5—Ni2 C17—N5—H5	112.20 (10) 84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14) 167.87 (17) 116.3 (3) 116.7 (3) 106.3 (2) 105.4	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3 C16—N1—C1 C16—N1—Ni1 C1—N1—Ni1 C16—N1—H1 C1—N1—H1 Ni1—N1—H1	83.03 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3) 105.3 105.4 105.4
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N7—Ni2—N5 C17—N5—C32 C17—N5—Ni2 C32—N5—Ni2 C17—N5—H5 C32—N5—H5	112.20 (10) 84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14) 167.87 (17) 116.3 (3) 116.7 (3) 106.3 (2) 105.6	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3 C16—N1—C1 C16—N1—Ni1 C1—N1—Ni1 C16—N1—H1 C1—N1—H1 Ni1—N1—H1 C3—N2—C7	83.03 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3) 105.3 105.4 105.4 105.4 122.5 (4)
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N7—Ni2—N5 C17—N5—C32 C17—N5—Ni2 C32—N5—Ni2 C32—N5—H5 Ni2—N5—H5	112.20 (10) 84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14) 167.87 (17) 116.3 (3) 116.7 (3) 106.3 (2) 105.4 105.5	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3 C16—N1—C1 C16—N1—Ni1 C1—N1—Ni1 C16—N1—H1 C1—N1—H1 Ni1—N1—H1 C3—N2—C7 C3—N2—Ni1	83.03 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3) 105.3 105.4 105.4 122.5 (4) 127.9 (3)
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N8—Ni2—N5 N7—Ni2—N5 C17—N5—C32 C17—N5—Ni2 C32—N5—Ni2 C17—N5—H5 C32—N5—H5 Ni2—N5—H5 C19—N6—C23	112.20 (10) 84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14) 167.87 (17) 116.3 (3) 116.7 (3) 106.3 (2) 105.4 105.5 119.6 (4)	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3 C16—N1—C1 C16—N1—Ni1 C16—N1—H1 C1—N1—H1 Ni1—N1—H1 C3—N2—C7 C3—N2—Ni1 C7—N2—Ni1	83.05 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3) 105.3 105.4 105.4 122.5 (4) 127.9 (3) 109.1 (3)
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N8—Ni2—N5 N7—Ni2—N5 C17—N5—C32 C17—N5—Ni2 C32—N5—Ni2 C17—N5—H5 C32—N5—H5 Ni2—N5—H5 C19—N6—C23 C19—N6—Ni2	112.20 (10) 84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14) 167.87 (17) 116.3 (3) 116.7 (3) 106.3 (2) 105.6 105.5 119.6 (4) 128.2 (3)	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3 C16—N1—C1 C16—N1—Ni1 C16—N1—H1 C1—N1—H1 Ni1—N1—H1 C3—N2—C7 C3—N2—Ni1 C7—N2—Ni1 C7—N2—Ni1 C8—N3—C9	83.03 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3) 105.3 105.4 105.4 105.4 122.5 (4) 127.9 (3) 109.1 (3) 116.0 (3)
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N7—Ni2—N5 C17—N5—C32 C17—N5—Ni2 C32—N5—Ni2 C32—N5—H5 C32—N5—H5 Ni2—N5—H5 C19—N6—C23 C19—N6—Ni2 C23—N6—Ni2	112.20 (10) 84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14) 167.87 (17) 116.3 (3) 116.7 (3) 106.3 (2) 105.4 105.5 119.6 (4) 128.2 (3) 111.8 (3)	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3 C16—N1—C1 C16—N1—Ni1 C1—N1—H1 C1—N1—H1 Ni1—N1—H1 C3—N2—C7 C3—N2—Ni1 C7—N2—Ni1 C8—N3—C9 C8—N3—Ni1	83.03 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3) 105.3 105.4 105.4 105.4 122.5 (4) 127.9 (3) 109.1 (3) 116.0 (3) 106.4 (2)
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N7—Ni2—N5 C17—N5—C32 C17—N5—Ni2 C32—N5—Ni2 C32—N5—H5 C32—N5—H5 C19—N6—C23 C19—N6—Ni2 C23—N6—Ni2 C23—N6—Ni2 C24—N7—C25	112.20 (10) 84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14) 167.87 (17) 116.3 (3) 116.7 (3) 106.3 (2) 105.4 105.5 119.6 (4) 128.2 (3) 111.8 (3) 117.1 (3)	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3 C16—N1—C1 C16—N1—Ni1 C1—N1—Ni1 C16—N1—H1 C1—N1—H1 Ni1—N1—H1 C3—N2—C7 C3—N2—Ni1 C7—N2—Ni1 C8—N3—C9 C8—N3—Ni1 C9—N3—Ni1	83.03 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3) 105.3 105.4 105.4 122.5 (4) 127.9 (3) 109.1 (3) 116.0 (3) 106.4 (2) 117.3 (3)
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N7—Ni2—N5 N7—Ni2—N5 C17—N5—C32 C17—N5—Ni2 C32—N5—Ni2 C17—N5—H5 C12—N5—H5 Ni2—N5—H5 C19—N6—C23 C19—N6—C23 C19—N6—Ni2 C23—N6—Ni2 C24—N7—C25 C24—N7—Ni2	112.20 (10) 84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14) 167.87 (17) 116.3 (3) 116.7 (3) 106.3 (2) 105.4 105.5 119.6 (4) 128.2 (3) 111.8 (3) 117.1 (3) 104.5 (3)	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3 C16—N1—C1 C16—N1—Ni1 C1—N1—Ni1 C1—N1—H1 C1—N1—H1 Ni1—N1—H1 C3—N2—C7 C3—N2—Ni1 C7—N2—Ni1 C7—N2—Ni1 C8—N3—Ni1 C9—N3—Ni1 C8—N3—H3	83.03 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3) 105.3 105.4 105.4 122.5 (4) 127.9 (3) 109.1 (3) 116.0 (3) 106.4 (2) 117.3 (3) 105.3
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N7—Ni2—N5 N7—Ni2—N5 C17—N5—C32 C17—N5—N2 C17—N5—N2 C17—N5—H5 C32—N5—H5 Ni2—N5—H5 C19—N6—C23 C19—N6—N2 C23—N6—Ni2 C24—N7—C25 C24—N7—N2 C25—N7—Ni2	112.20 (10) 84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14) 167.87 (17) 116.3 (3) 116.7 (3) 106.3 (2) 105.4 105.5 119.6 (4) 128.2 (3) 111.8 (3) 117.1 (3) 104.5 (3)	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3 C16—N1—C1 C16—N1—Ni1 C1—N1—Ni1 C1—N1—H1 Ni1—N1—H1 C3—N2—C7 C3—N2—Ni1 C7—N2—Ni1 C8—N3—C9 C8—N3—Ni1 C9—N3—H3	83.03 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3) 105.3 105.4 105.4 105.4 122.5 (4) 127.9 (3) 109.1 (3) 116.0 (3) 106.4 (2) 117.3 (3) 105.3
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N7—Ni2—N5 C17—N5—C32 C17—N5—C32 C17—N5—Ni2 C32—N5—Ni2 C17—N5—H5 C32—N5—H5 C19—N6—C23 C19—N6—Ni2 C23—N6—Ni2 C23—N6—Ni2 C24—N7—C25 C24—N7—Ni2 C25—N7—Ni2 C24—N7—Ni2	112.20 (10) 84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14) 167.87 (17) 116.3 (3) 116.7 (3) 106.3 (2) 105.4 105.5 119.6 (4) 128.2 (3) 111.8 (3) 117.1 (3) 104.5 (3) 105.4	N4—N11—N1 N2—Ni1—N3 N4—Ni1—N3 N1—Ni1—N3 C16—N1—C1 C16—N1—C1 C16—N1—Ni1 C1—N1—Ni1 C16—N1—H1 C1—N1—H1 Ni1—N1—H1 C3—N2—Ni1 C7—N2—Ni1 C8—N3—Ni1 C9—N3—Ni1 C8—N3—H3 Ni1—N3—H3	83.03 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3) 105.3 105.4 105.4 122.5 (4) 127.9 (3) 109.1 (3) 116.0 (3) 106.4 (2) 117.3 (3) 105.3 105.3 105.3
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N7—Ni2—N5 N7—Ni2—N5 C17—N5—C32 C17—N5—N2 C32—N5—N2 C17—N5—H5 C32—N5—H5 Ni2—N5—H5 C19—N6—C23 C19—N6—C23 C19—N6—N2 C23—N6—N12 C24—N7—C25 C24—N7—N2 C24—N7—N2 C25—N7—N2	$\begin{array}{c} 112.20(10)\\ 84.38(14)\\ 94.04(14)\\ 94.20(14)\\ 85.74(14)\\ 167.87(17)\\ 116.3(3)\\ 116.7(3)\\ 106.3(2)\\ 105.4\\ 105.6\\ 105.5\\ 119.6(4)\\ 128.2(3)\\ 111.8(3)\\ 117.1(3)\\ 104.5(3)\\ 118.2(3)\\ 105.4\\ 105.2\\ \end{array}$	N4—NII—NI N2—NiI—N3 N4—NiI—N3 N1—NiI—N3 C16—N1—C1 C16—N1—C1 C16—N1—Ni1 C1—N1—Ni1 C16—N1—H1 C1—N1—H1 NiI—N1—H1 C3—N2—C7 C3—N2—Ni1 C7—N2—Ni1 C8—N3—Ni1 C9—N3—Ni1 C9—N3—H3 Ni1—N3—H3 C11—N4—C15	83.05 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3) 105.3 105.4 105.4 122.5 (4) 127.9 (3) 109.1 (3) 116.0 (3) 106.4 (2) 117.3 (3) 105.3 105.3 105.3 105.3 120.8 (4)
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N8—Ni2—N5 N7—Ni2—N5 N7—Ni2—N5 C17—N5—C32 C17—N5—Ni2 C32—N5—Ni2 C17—N5—H5 C12—N5—H5 C19—N6—C23 C19—N6—Ni2 C23—N6—Ni2 C24—N7—C25 C24—N7—Ni2 C24—N7—Ni2 C24—N7—H7 Ni2—N7—H7	112.20 (10) 84.38 (14) 94.04 (14) 94.20 (14) 85.74 (14) 167.87 (17) 116.3 (3) 116.7 (3) 106.3 (2) 105.4 105.5 119.6 (4) 128.2 (3) 111.8 (3) 117.1 (3) 104.5 (3) 118.2 (3) 105.4 105.5	N4—NII—NI N2—NiI—N3 N4—NiI—N3 N1—NiI—N3 C16—N1—C1 C16—N1—Ni1 C1—N1—Ni1 C1—N1—H1 NiI—N1—H1 C3—N2—C7 C3—N2—Ni1 C7—N2—Ni1 C8—N3—C9 C8—N3—Ni1 C9—N3—H3 Ni1—N3—H3 C11—N4—C15 C11—N4—Ni1	83.03 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3) 105.3 105.4 105.4 105.4 122.5 (4) 127.9 (3) 109.1 (3) 116.0 (3) 106.4 (2) 117.3 (3) 105.3 105.3 105.3 120.8 (4) 128.2 (3)
N6—Ni2—N8 N6—Ni2—N7 N8—Ni2—N7 N6—Ni2—N5 N7—Ni2—N5 N7—Ni2—N5 C17—N5—C32 C17—N5—C32 C17—N5—Ni2 C32—N5—Ni2 C17—N5—H5 C32—N5—H5 Ni2—N5—H5 C19—N6—C23 C19—N6—Ni2 C23—N6—Ni2 C23—N6—Ni2 C24—N7—C25 C24—N7—Ni2 C25—N7—Ni2 C25—N7—H7 Ni2—N7—H7 C27—N8—C31	$\begin{array}{c} 112.20(10)\\ 84.38(14)\\ 94.04(14)\\ 94.20(14)\\ 85.74(14)\\ 167.87(17)\\ 116.3(3)\\ 116.7(3)\\ 106.3(2)\\ 105.4\\ 105.6\\ 105.5\\ 119.6(4)\\ 128.2(3)\\ 111.8(3)\\ 117.1(3)\\ 104.5(3)\\ 118.2(3)\\ 105.4\\ 105.2\\ 105.2\\ 105.2\\ 102.0(4)\\ \end{array}$	N4—NII—NI N2—NiI—N3 N4—NiI—N3 N1—NiI—N3 C16—N1—C1 C16—N1—Ni1 C1—N1—Ni1 C1—N1—H1 NiI—N1—H1 C3—N2—C7 C3—N2—Ni1 C7—N2—Ni1 C8—N3—Ni1 C9—N3—Ni1 C9—N3—H3 Ni1—N3—H3 C11—N4—C15 C11—N4—Ni1	83.03 (14) 85.80 (14) 94.09 (14) 170.06 (17) 116.0 (3) 104.6 (2) 118.9 (3) 105.3 105.4 105.4 122.5 (4) 127.9 (3) 106.4 (2) 117.3 (3) 105.3 105.3 105.3 105.3 120.8 (4) 128.2 (3) 110.9 (3)

C31—N8—Ni2	109.3 (3)	N1—C1—C2	107.3 (3)
N5—C17—C21	109.6 (4)	C5—C1—C2	111.6 (4)
N5—C17—C18	106.8 (4)	N1—C1—C6	109.9 (4)
C21—C17—C18	111.8 (4)	C5—C1—C6	110.1 (4)
N5-C17-C22	109.9 (4)	C2—C1—C6	107.4 (4)
C21—C17—C22	110.5 (4)	C3—C2—C1	120.5 (4)
C18—C17—C22	108.1 (4)	С3—С2—Н2А	107.2
C19—C18—C17	119.7 (4)	C1—C2—H2A	107.2
C19—C18—H18A	107.4	С3—С2—Н2В	107.2
C17—C18—H18A	107.4	C1—C2—H2B	107.2
C19—C18—H18B	107.4	H2A—C2—H2B	106.8
C17—C18—H18B	107.4	N2—C3—C2	121.7 (4)
H18A—C18—H18B	106.9	N2—C3—C4	124.4 (4)
N6—C19—C20	124.6 (4)	C2—C3—C4	114.0 (4)
N6-C19-C18	120.5 (4)	C3—C4—H4A	109.5
C20—C19—C18	114.8 (4)	C3—C4—H4B	109.5
C19—C20—H20A	109.5	H4A—C4—H4B	109.5
С19—С20—Н20В	109.5	C3—C4—H4C	109.5
H20A—C20—H20B	109.5	H4A—C4—H4C	109.5
С19—С20—Н20С	109.5	H4B—C4—H4C	109.5
H20A—C20—H20C	109.5	С1—С5—Н5А	109.5
H20B—C20—H20C	109.5	C1—C5—H5B	109.5
C17—C21—H21A	109.5	H5A—C5—H5B	109.5
C17—C21—H21B	109.5	C1—C5—H5C	109.5
H21A—C21—H21B	109.5	H5A—C5—H5C	109.5
C17—C21—H21C	109.5	H5B—C5—H5C	109.5
H21A—C21—H21C	109.5	С1—С6—Н6А	109.5
H21B—C21—H21C	109.5	С1—С6—Н6В	109.5
C17—C22—H22A	109.5	Н6А—С6—Н6В	109.5
C17—C22—H22B	109.5	C1—C6—H6C	109.5
H22A—C22—H22B	109.5	Н6А—С6—Н6С	109.5
C17—C22—H22C	109.5	H6B—C6—H6C	109.5
H22A—C22—H22C	109.5	N2—C7—C8	107.4 (4)
H22B—C22—H22C	109.5	N2—C7—H7A	110.2
N6-C23-C24	109.0 (4)	С8—С7—Н7А	110.2
N6—C23—H23A	109.9	N2—C7—H7B	110.2
C24—C23—H23A	109.9	С8—С7—Н7В	110.2
N6—C23—H23B	109.9	H7A—C7—H7B	108.5
С24—С23—Н23В	109.9	N3—C8—C7	107.9 (3)
H23A—C23—H23B	108.3	N3—C8—H8A	110.1
N7—C24—C23	108.6 (4)	С7—С8—Н8А	110.1
N7—C24—H24A	110.0	N3—C8—H8B	110.1
C23—C24—H24A	110.0	С7—С8—Н8В	110.1
N7—C24—H24B	110.0	H8A—C8—H8B	108.4
C23—C24—H24B	110.0	N3—C9—C13	110.5 (4)
H24A—C24—H24B	108.4	N3—C9—C10	107.3 (4)
N7—C25—C29	110.6 (4)	C13—C9—C10	111.1 (4)
N7—C25—C26	107.3 (4)	N3—C9—C14	110.4 (4)
C29—C25—C26	111.5 (4)	C13—C9—C14	110.2 (4)

N7—C25—C30	109.7 (4)	C10—C9—C14	107.3 (4)
C29—C25—C30	109.9 (4)	C11—C10—C9	118.9 (4)
C26—C25—C30	107.8 (4)	C11—C10—H10A	107.6
C27—C26—C25	120.2 (4)	С9—С10—Н10А	107.6
С27—С26—Н26А	107.3	C11—C10—H10B	107.6
С25—С26—Н26А	107.3	С9—С10—Н10В	107.6
С27—С26—Н26В	107.3	H10A—C10—H10B	107.0
С25—С26—Н26В	107.3	N4—C11—C12	123.3 (4)
H26A—C26—H26B	106.9	N4—C11—C10	121.3 (4)
N8—C27—C28	124.2 (4)	C12—C11—C10	115.5 (4)
N8—C27—C26	121.8 (4)	C11—C12—H12A	109.5
C28—C27—C26	114.0 (4)	C11—C12—H12B	109.5
C27—C28—H28A	109.5	H12A—C12—H12B	109.5
C27—C28—H28B	109.5	C11—C12—H12C	109.5
H28A—C28—H28B	109.5	H12A—C12—H12C	109.5
C27—C28—H28C	109.5	H12B—C12—H12C	109.5
H28A—C28—H28C	109.5	С9—С13—Н13А	109.5
H28B—C28—H28C	109.5	С9—С13—Н13В	109.5
С25—С29—Н29А	109.5	H13A—C13—H13B	109.5
С25—С29—Н29В	109.5	С9—С13—Н13С	109.5
H29A—C29—H29B	109.5	H13A—C13—H13C	109.5
С25—С29—Н29С	109.5	H13B—C13—H13C	109.5
H29A—C29—H29C	109.5	C9—C14—H14A	109.5
H29B—C29—H29C	109.5	C9—C14—H14B	109.5
С25—С30—Н30А	109.5	H14A—C14—H14B	109.5
С25—С30—Н30В	109.5	C9—C14—H14C	109.5
H30A—C30—H30B	109.5	H14A—C14—H14C	109.5
С25—С30—Н30С	109.5	H14B—C14—H14C	109.5
H30A—C30—H30C	109.5	N4-C15-C16	109.0 (4)
H30B—C30—H30C	109.5	N4-C15-H15A	109.9
N8—C31—C32	107.4 (4)	C16—C15—H15A	109.9
N8—C31—H31A	110.2	N4—C15—H15B	109.9
C32—C31—H31A	110.2	C16—C15—H15B	109.9
N8—C31—H31B	110.2	H15A—C15—H15B	108.3
C32—C31—H31B	110.2	N1-C16-C15	108.2 (4)
H31A—C31—H31B	108.5	N1-C16-H16A	110.1
N5-C32-C31	107.7 (3)	C15—C16—H16A	110.1
N5—C32—H32A	110.2	N1—C16—H16B	110.1
C31—C32—H32A	110.2	C15—C16—H16B	110.1
N5—C32—H32B	110.2	H16A—C16—H16B	108.4
C31—C32—H32B	110.2	H1C—O1—H1D	108.1
H32A—C32—H32B	108.5	H2E—O2—H2F	108.1
N2—Ni1—N4	174.32 (16)	H3C—O3—H3D	108.1
N2—Ni1—N1	94.09 (14)	H4F—O4—H4G	108.1
N6—Ni2—N5—C17	-25.0(3)	N2—Ni1—N1—C16	-155.2 (3)
N8—Ni2—N5—C17	147.2 (3)	N4—Ni1—N1—C16	30.5 (3)
N7—Ni2—N5—C17	57.8 (8)	N3—Ni1—N1—C16	115.8 (8)
N6—Ni2—N5—C32	-156.6 (3)	N2—Ni1—N1—C1	-23.8 (3)
N8—Ni2—N5—C32	15.6 (3)	N4—Ni1—N1—C1	161.8 (3)

N7—Ni2—N5—C32	-73.8 (8)	N3—Ni1—N1—C1	-112.8 (9)
N8—Ni2—N6—C19	-100.7 (12)	N4—Ni1—N2—C3	71.0 (17)
N7—Ni2—N6—C19	-179.4 (4)	N1—Ni1—N2—C3	-9.9 (4)
N5—Ni2—N6—C19	-11.5 (4)	N3—Ni1—N2—C3	160.1 (4)
N8—Ni2—N6—C23	86.9 (12)	N4—Ni1—N2—C7	-100.7 (16)
N7—Ni2—N6—C23	8.3 (3)	N1—Ni1—N2—C7	178.3 (3)
N5—Ni2—N6—C23	176.2 (3)	N3—Ni1—N2—C7	-11.7 (3)
N6—Ni2—N7—C24	-31.8 (3)	N2—Ni1—N3—C8	-17.3 (3)
N8—Ni2—N7—C24	155.8 (3)	N4—Ni1—N3—C8	157.0 (3)
N5—Ni2—N7—C24	-115.6 (7)	N1—Ni1—N3—C8	72.4 (10)
N6—Ni2—N7—C25	-164.0 (3)	N2—Ni1—N3—C9	-149.1 (3)
N8—Ni2—N7—C25	23.6 (3)	N4—Ni1—N3—C9	25.2 (3)
N5—Ni2—N7—C25	112.2 (7)	N1—Ni1—N3—C9	-59.3 (10)
N6—Ni2—N8—C27	-64.9 (13)	N2—Ni1—N4—C11	95.4 (17)
N7—Ni2—N8—C27	13.1 (4)	N1—Ni1—N4—C11	176.8 (4)
N5—Ni2—N8—C27	-154.7 (4)	N3—Ni1—N4—C11	6.7 (4)
N6—Ni2—N8—C31	103.2 (12)	N2—Ni1—N4—C15	-87.3 (16)
N7—Ni2—N8—C31	-178.8 (3)	N1—Ni1—N4—C15	-5.9 (3)
N5—Ni2—N8—C31	13.4 (3)	N3—Ni1—N4—C15	-176.0 (3)
C32—N5—C17—C21	64.6 (5)	C16—N1—C1—C5	60.0 (5)
Ni2—N5—C17—C21	-62.3 (4)	Ni1—N1—C1—C5	-66.1 (4)
C32—N5—C17—C18	-174.1 (3)	C16—N1—C1—C2	-178.2 (4)
Ni2—N5—C17—C18	59.0 (4)	Ni1—N1—C1—C2	55.7 (4)
C32—N5—C17—C22	-57.1 (5)	C16—N1—C1—C6	-61.7 (5)
Ni2—N5—C17—C22	176.1 (3)	Ni1—N1—C1—C6	172.2 (3)
N5-C17-C18-C19	-66.8 (5)	N1—C1—C2—C3	-62.9 (5)
C21-C17-C18-C19	53.1 (6)	C5—C1—C2—C3	58.2 (5)
C22-C17-C18-C19	175.0 (4)	C6—C1—C2—C3	179.0 (4)
C23—N6—C19—C20	1.0 (7)	C7—N2—C3—C2	178.3 (4)
Ni2—N6—C19—C20	-170.8 (3)	Ni1—N2—C3—C2	7.6 (7)
C23—N6—C19—C18	-178.5 (4)	C7—N2—C3—C4	-0.3 (7)
Ni2—N6—C19—C18	9.6 (7)	Ni1—N2—C3—C4	-171.1 (3)
C17-C18-C19-N6	31.5 (7)	C1—C2—C3—N2	31.3 (7)
C17-C18-C19-C20	-148.2 (4)	C1—C2—C3—C4	-149.9 (4)
C19—N6—C23—C24	-155.9 (4)	C3—N2—C7—C8	-134.8 (5)
Ni2—N6—C23—C24	17.2 (5)	Ni1—N2—C7—C8	37.5 (4)
C25—N7—C24—C23	-177.7 (4)	C9—N3—C8—C7	174.6 (4)
Ni2—N7—C24—C23	49.4 (4)	Ni1—N3—C8—C7	42.1 (4)
N6—C23—C24—N7	-44.5 (5)	N2—C7—C8—N3	-53.3 (5)
C24—N7—C25—C29	-61.5 (5)	C8—N3—C9—C13	-64.1 (5)
Ni2—N7—C25—C29	64.9 (4)	Ni1—N3—C9—C13	63.1 (4)
C24—N7—C25—C26	176.7 (4)	C8—N3—C9—C10	174.7 (4)
Ni2—N7—C25—C26	-56.9 (4)	Ni1—N3—C9—C10	-58.1 (5)
C24—N7—C25—C30	59.9 (5)	C8—N3—C9—C14	58.1 (5)
Ni2—N7—C25—C30	-173.7 (3)	Ni1—N3—C9—C14	-174.7 (3)
N7—C25—C26—C27	63.1 (5)	N3—C9—C10—C11	67.1 (5)
C29—C25—C26—C27	-58.1 (6)	C13—C9—C10—C11	-53.8 (6)
C30—C25—C26—C27	-178.9 (4)	C14—C9—C10—C11	-174.3 (4)
C31—N8—C27—C28	-0.1 (7)	C15—N4—C11—C12	-1.0 (7)

Ni2—N8—C27—C28	166.6 (3)	Ni1—N4—C11—C12	176.1 (3)
C31—N8—C27—C26	-179.0 (4)	C15—N4—C11—C10	-179.3 (4)
Ni2—N8—C27—C26	-12.3 (7)	Ni1-N4-C11-C10	-2.2 (7)
C25-C26-C27-N8	-28.2 (7)	C9-C10-C11-N4	-36.3 (7)
C25—C26—C27—C28	152.8 (4)	C9-C10-C11-C12	145.3 (5)
C27—N8—C31—C32	129.6 (5)	C11—N4—C15—C16	157.4 (4)
Ni2—N8—C31—C32	-39.3 (4)	Ni1-N4-C15-C16	-20.2 (5)
C17—N5—C32—C31	-172.7 (4)	C1—N1—C16—C15	177.7 (4)
Ni2—N5—C32—C31	-40.8 (4)	Ni1-N1-C16-C15	-49.3 (4)
N8—C31—C32—N5	53.4 (5)	N4-C15-C16-N1	46.3 (5)

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···Br3	0.91	2.55	3.444 (4)	167.
O2—H2F…Br2	0.85	2.60	3.437 (3)	171.
O3—H3D···Br3	0.85	2.63	3.473 (3)	171.
N5—H5····O4 ⁱ	0.91	2.41	3.269 (5)	158.
O1—H1C…Br1 ⁱ	0.85	2.55	3.390 (3)	170.
N7—H7···Br2 ⁱⁱ	0.91	2.54	3.436 (4)	169.
N3—H3···O1 ⁱⁱ	0.91	2.45	3.328 (5)	161.
O2—H2E…Br3 ⁱⁱⁱ	0.85	2.50	3.339 (4)	171.
O1—H1D…Br4 ⁱⁱⁱ	0.85	2.44	3.280 (3)	169.
O3—H3C…Br2 ⁱⁱ	0.85	2.48	3.316 (3)	170.
O4—H4G…Br4 ⁱⁱ	0.85	2.49	3.335 (4)	171.
O4—H4F…Br1 ^{iv}	0.85	2.39	3.228 (3)	171.

Symmetry codes: (i) -x, y-1/2, -z-1/2; (ii) -x-1, y+1/2, -z-1/2; (iii) -x-1, y-1/2, -z-1/2; (iv) -x, y+1/2, -z-1/2.

Fig. 1

